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In their classic monograph on neutron transport theory,
Case et al.! introduced the function g(c, i),

gle,u) = [(1 - cu tanh™! p)® + mwep/2)7]70 , (1)

and gave many of its properties. It is now well known® that
this function is simply related to the normalization of the
singular eigenfunctions introduced later by Case.! An
analogous function is readily defined® in time-dependent
monoenergetic neutron-transport problems in plane geom-
etry with isotropic scattering; however it also contains a
complex transform variable. Bowden and Williams* have
shown that in such time-dependent problems the discrete
eigenfunctions are not always present in the normal-mode
expansion of the Laplace transform of the solution; that is,
there exists a curve, Cs, in the s/c-plane (see Fig. 1) such
that if s/c lies inside the curve (s € S;) discrete terms are
present, whereas for s/c outside the curve (s ¢ S.) there
are no discrete terms. The curve C; is given by*

! 14
= {s/c = a'+ iB'| a' =Eﬂé ta.nh"gné} . (2
We want to point out in this note that the function

0<ps<t , ()
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where s/c=a +if and Q*(u,s) are the limiting values of
the dispersion function

’
Bi=0

Q(z,s) = s - cz tanh™* (1/2) 4)

on its branch cut in the z-plane, is the inverse of the
square of the distance in the s/c-plane from the point (2,0)
to the point [a’(1t), B'(1)] which lies on the curve Cs.

The functions |92%(u,s)/c |? are easily found from Eq. (4)
to be

+ 2
QF(u,s)
€

= (@- ptanh™' p)* + Bxap/2) , (5)
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while the parametric form of Eq. (2) is
B () =7p/2 , «'(u)=ptanh™p , O<ps<i . (6)

Thus {Q%(y,s)/c|* are the squares of the distances in the
s/c-plane from the point (a,8) to the points [a'(1), = 18"(u) ]
which lie on the curve C;, in the lower and upper half-
planes, respectively. When 8 =0, Q*(u,s) and Q- (u,s) are
complex conjugates so that Eq. (5) reduces to Eq. (3) and
the stated result follows.
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Fig. 1. Location of the curve Cs in the complex s/c-plane,
s/c =« + iB. Several values of the parameter u are given in pa-
rentheses for Cs in the upper half-plane. The function v, (s) is the
solution of Q(vg, s) = 0 for which Re(vy) > 0 when Re(s/¢c) > 1.
Some values of v,(s) are plotted in the complex s-plane in Fig. 1
of Ref, 5 (Fig. 7.1 of Ref, 2).

Case et al. show, for example, that g(l/a,u) |max OCCULS
at u =0 for a<nm /8 whereas for a>7 /8 it occurs for p
between 0 and 1. For a very large, they show that gpax —
4a°/7®. The present geometric interpretation is seen to be
consistent with these characteristics. The radius of
curvature of the curve C given by Eq, (2) is n%/8 at (a',8)
= (0,0) as indicated by the dashed circle on Fig. 1. For a'
very large, 8’ ~ n/2 so that the minimum squared distance
from (e,0) to (a' B') approaches 7%/4, in agreement with
Eq. (3) and gnax — 407 7"
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